A strongly polynomial time algorithm for a constrained submodular optimization problem
نویسندگان
چکیده
منابع مشابه
A Faster Strongly Polynomial Time Algorithm for Submodular Function Minimization
We consider the problem of minimizing a submodular function f defined on a set V with n elements. We give a combinatorial algorithm that runs in O(n EO + n) time, where EO is the time to evaluate f(S) for some S ⊆ V. This improves the previous best strongly polynomial running time by more than a factor of n
متن کاملA Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time
We give a strongly polynomial-time algorithm minimizing a submodular function f given by a value-giving oracle. The algorithm does not use the ellipsoid method or any other linear programming method. No bound on the complexity of the values of f is needed to be known a priori. The number of oracle calls is bounded by a polynomial in the size of the underlying set.
متن کاملsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
A strongly polynomial algorithm for line search in submodular polyhedra
A submodular polyhedron is a polyhedron associated with a submodular function. This paper presents a strongly polynomial time algorithm for line search in submodular polyhedra with the aid of a fully combinatorial algorithm for submodular function minimization. The algorithm is based on the parametric search method proposed by Megiddo.
متن کاملA Strongly Polynomial Algorithm for the Inverse Shortest Arborescence Problem
In this paper an inverse problem of the weighted shortest arborescence problem is discussed. That is. given a directed graph G and a set of nonnegative costs on its arcs. we need to modify those costs as little as possible to ensure that T, a given (.I-arborescence of G, is the shortest one. It is found that only the cost of T needs modifying. An O(rz”) combinatorial algorithm is then proposed....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2001
ISSN: 0166-218X
DOI: 10.1016/s0166-218x(00)00285-7